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Periodic Solutions of a Class of Hyperbolic Equations Containing a

Small Parameter

Jack K. Hale

1. Introduction. The purpose of the present paper is to discuss

a method for the determination of solutions u(t,x) and v(y,z)

of the problems

u,_ -u € g(t,x,u,u,,u_),
(1.1) tt t
u(t,0) = u(t,m) =0,
and
(1.2) Vi = € f(y,z,v,vy,vz),

respectively, with u(t+2m,%x) = u(t,x), v(y+2m,z) = v(y,z) = v(y,z+2m)
provided that g is 2r-periodic in t and f 1s 2r-periodic in
y,z and € is a small real parameter. Equation (1.1) has been
discussed by many authors and the reader may consult the paper of
Vejvoda [6] for a survey of results as well as an extensive bibliography.
Equation (1.2) has been discussed extensively by L. Cesari [21.

‘Our aim in this paper is to show that the method used by
L. Cesari and the author for similar problems in ordinary differential
equations can be extended in a completely analogous way to equations

(1.1) and (1.2)L;vIn fact, after the preliminary discussion of the




Fredholm alternative for (1.1), (1.2) given, respectively, in sections
2.1 and 3.1, the reader will observe that the results as well as

the techniques follow very closely Chapter 6 of the monograph [3].

We obtain a set of bifurcation or determining equations for equations
(1.1), (1.2) which are equations for an unknown function satisfying
the homegeneous equation and represent necessary and sufficient
conditions for the existence of periodic solutions of the type stated
previously. One can then apply the implicit function theorem to
obtain sufficient conditions for the existence of periodic solutions
(see Theorems 4 and 9). These sufficient conditions coincide with
the ones obtained by 0. Vejvoda [T, Theorem l.4.1] by an application
of a procedure more similar to the usual method of Poincaré in
ordinary differential equations.

L. Cesari [2] also obtained bifurcation equations for (1.2)
and the method used in this paper is very similar to the one used by
L. Cesari. The unknown function in the bifurcation equations of
Cesari represent the initial values of the solution whereas our
unknown function is the projection of the solution onto a solution of
the homogeneous equation. This latter type of unknown injects more
geometry into the problem and is completely analogous to the method
of Cesari and the author for ordinary differential equations. The
reader will find it instructive to compare this method with the recent

work of H. Antosiewicz [1].




In the following, we shall let R” be a normed n-dimensional

real vector space and let C. be the space of all functions mapping

k

o]
R~ into Rl which are bounded and continuous together with all

derivatives up through order k. For any ¢ in C,, the norm,

k,
Hcpl[k, is defined by

I .
2 | ax*oxY

ol = 2 %

We shall also use the same notation Ck when the functions map Rl

into Rl. It will always be clear from the context whether the

domain is R2 or Rl.




2. The wave equation.

2.1. The linear equation. Consider the classes of functions

C;, T and M defined by
C; = {@: @ij)(t,x) def ij(t,x)/axj is in C_  for J=0,1,2,44.,k}
T = {CP: (P(t+2TT,X) = CP(‘t,X) = (P(t,X+2TT) )CP(tJ‘X) = 'CP(t:x)}
M = {@: ¢(t,x) = p(x+t)-p(-x+t),p(t+2m) = p(t)} .

* * 3

For any ¢ in C,, we define H@Hk = sup [H@iJ)HO, j=0,1,+..,k}. For
*

any ® in TN Ck’ k 2 0, we define the element QP in M N Ck by

2r a2r

(2.2) (ap)(t,x) = E% [ o(s,x+t-s)ds - %F [ o(s,-x+t-s)ds ,
o o

It follows easily from the definition that Q 1is a projection operator
N .
mapping T N Ck onto MnN Ck' Finally, we designate by Ml the

following set:
(2.3) M = {p in TNC :Q =0} .

%
Notice that any element ¢ in T N Ck can be represented as

® = Q + (I-Q)9 and that ¢ in M+ N C; implies @ = (I-Q)®




2r
and, therefore, fo ®(s,-s)ds = 0. The latter relation follows

*
because © in M'Lﬂ Ck implies

or

2 2r 2
[ o(t,-t)at = J [(I-Q)9](t,-t)at

= [ U a(s,2t-s)at)as

2r 2w

=/ 1] o(s,u)dulds = 0
o} (o]

since @(s,-u) = -9(s,u).

*
Lemma 1. TFor any nonnegative integer k and any ¢ in TN Ck’

the following statements are equivalent:

i) (peM‘LﬂCZ;

or
ii) | 9(s,y-s)ds =0, 0 sy = 2r ;
O
ar
ii1) [ ] o(t,x)r(t,x)dxdt = 0 for all v in MN C.
o O

Proof: If @ ¢ M'L n C;, then (Qp)(t,x) = 0 for all t,x, and
fi"qp(s,-s)ds = 0. In particular, 2m(Qp)(t,-t)= —fi”cp(s,Et-s)ds =0
for all t. Therefore, i) implies ii). If 1i) is satisfied, then
i) is obviously satisfied.

To prove that ii) is equivalent to iii), suppose that




Wt,x) = p(x+t)-p(-x+t). Then

2m T
T o(t,x)[ p(x+t)-p( -x+t)Jaxdt
(o] (o]
2T t+T 2r t
= [ | o(t,y-t)p(y)aydt- | [ o(t,t-y)p(y)dydt
o t o t-m
er t+r 2r t
= [ o(t,y-t)p(y)dydt+ [ [ o(t,y-t)p(y)dydt
o t o t-m
2 t+1r
=[ | o(t,y-t)p(y)dyat
o) t-m
i 21
=/ | o(t,y-t)at | o(y)dy .
-7 o

and this relation implies ii) is equivalent to iii).

The following property is well known.

Lemma 2. The set M N 02 coincides with the set of solutions in 02

of the problem

wu,-u =0
(2. u) tt XX

u(t,0) = u(t,m) =0, o<x<Tm, t >0,

Now consider a continuous function @(t,x),p(t+2m,x) = o(t,x),
0sx =17, o(t,0) = ¢(t,m) = 0 and the associated boundary value

problem




U -u o= ?o(t,x)
(2.5) u(t,0) = u(t,m) =0

u(‘t+2'lT,x)=u(t,x) , O<x<wm, t>0.

By extending the function o©(t,x) as an odd 2r-periodic function of
x , and keeping the same notation for the extension of @, the above

problem is equivalent to the following:

Yy

(2.6) u(t+27,x) = u(t,x) = u(t,x+2r)

“Ux = o(t,x)
u(t,x) = -u(t,-x) , ~2e<x <>, t>0.

*
Lemma 3. For any given integer k2 1 and a given © in TN Ck’
x
K’

*
Furthermore, if o € M’L n Ck , then there exists a unique solution of

the problem (2.6) has a solution if and only if © € M noc

(2.6) in Nﬁ n Ck+l' If this unique solution is designated by
K (t,x)p, 0 t, x S 2, then.jﬁfk‘,') is a linear operator mapping

* .
M'L N Ck into Ml n Ck+l and there is a constant K such that

(2.7) 12, )olly,, = Hloly -

Proof: The first part of the lemma follows from a result of Vejvoda
[6, p-365] and Lemma 2. For the sake of completeness, we include a

*
proof of this fact here. For any ® in T N Ck’ k 2z 1, consider




the function

1 t x+t-6
Ut,x) = 5/ [ (6, ¢t)aedae
2 o x-t+6

which belongs to C, ., satisfies U -U _ = ®(t,x) and is clearly
periodic in x. Also, @(t,-x) = -0(t,x) dimplies U(t,-x) = -U(t,x).
To prove the first part of the lemma, it is sufficient to show that
U(t,x) = U(t+2m,x) if and only if @ Delongs to Mt n C;. A
straightforward computation making use of ®(t,-x) = -9(t,x) yields

U(t+2m,x) = U(t,x) for all t,x if and only if

2r x+t-6
def 1
£ I J

W(t,}() = —2-1? q>(9,§)d§d6 =0

o X-t+6
for all t,x. But since VY(t,x)e C, we will obtain ¥(t,x) = 0 for
all t,x if and only if wt(t,x) =0, wx(t,x) =0 for all t,x and
there is a value of t,x for which V¥(t,x) = O. But, using the fact

that o(t,-x) = -9(t,x), we obtain

¥, (t,%) = (@)(t,%)

17
(@) (t,x) + = [ ©(6,-x+t-6)ae
(o]

¥, (%,%)

If wt(t,x) =0 = wx(t,x) for all t,x, then V(t,x) = constant and




, 21 2t-e
w(t,t) =51 | o(6,6)ded0

. 2T -2t+6
=-5=1 ?(6,-£)dedd

which implies V¥(t,x) = O for all t,x. But Wt(t,x) =0 = Wx(t,x)
for all t,x if and only if ¢ is in M+ n C; and, therefore,
U(t+2m,x) = U(t,x) if and only if @ is in M n C,- This completes
the proof of the first part of the lemma.

Obviously, if @ belongs to M'L n C; then hﬁ%f(',')@deU-QU

is a solution of (2.5) in M'L nc and is the only solution with

k+1
this property. The estimate (2.7) is obtained by simple differentiations

and integrations. This completes the proof of Lemma 3.

2.2. The nonlinear wave equation. Consider the problem

U - = eg(t, x, v, Uy s ux)
(2.8) u(t+2r,x) = u(t,x) = u(t,x+2r)

u(t,x) = -u(t,-x)

where € 1is a real parameter and
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g(t+am,x,u,p,q) = g(t,x,u,p,q) = g(t,x+2m,u,p,q)

(2.9)
g(t,x,u,p, a) = -g(t,-%,-1,-p,q)

for all t,x,u,p,q in the region Q(R) defined by

(2.10) AR) = {(t:X)u:p,q): -0 < t,x < m,|u|+| Pl'*" q| s R}.

Obtaining a solution of (2.8) is equivalent to obtaining
a solution of the problem

U -u = € g(t,x,u,ut,ux)

u(t,0) = u(t,2r), u(t+2m,x) = u(t,x)
provided that g is periodic in t of period 2r and
g(t,0,0,0,q) = g(t,m,0,0,a) = O .
Therefore, we restrict our discussion to (2.8).
In the following, we shall sometimes impose one of the

following hypotheses:

(Al) g(t,x,u,p,q) 1is continuous in Q(R) together with Lipschitz

continuous first derivatives with respect to x,u,p,q in Q(R);
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(A2) g(t,x,u,p,q) is continuous in Q(R), has continuous first
and Lipschitz continuous second derivaties with respect to x,u,p,g

in Q(R);

(A5) g depends only upon t,x,u, is continuous in Q(R) together
with its first, second and third derivatives with respect to x,u

in Q(R).

For a fixed v in MN C2 and for given positive constants

a,b, a<b <R, let
(2.11) T(ab) = (W in T NCy: Q¥ = v, [, = o, |lvll, = b}

If ¢ is any function in T,(y,8,b), then we will let G(-,-,9)

designate the function
def
(2.12)  o(t,x,0) = e(t,x0(t,x),0,.(t,x),0_(t,%)), 0 = t,x = 2.

Theorem 1. If g satisfies (Al) and a<b<R are given positive
constants, then there is an el > 0 with the following property:
corresponding to each 7y in MDN ,C2, | 7”2 £ a and to each €,

| €| = €,, there is a unique function T = I(v,€) in T,(vw;a,b),

continuous in y and €, T(y,0) = v, such that T' satisfies the

relation




(2.13) PipTyy = € G(t,x,I") - € Q G(-,-,0)(t,x)
where G is defined in (2.12). The function T(y,€) can be obtained

by the method of successive approximations

(2.14)
u(n+l)(‘t,x) = ‘{(t,X)+ e%(t,x)(I-Q)G(',‘,u(n)),

n = 0,1’2,..,

where A (-,-) 1is defined in Lemma 3. Finally, T(r,€) is

Lipschitzian with respect to 7y wuniformly with respect to € for

I, =2 e =e.

Proof: If g satisfies (Al), then it is clear that G defined in
*
(2.12) belongs to C, for any ¢ in TE(T,a,b). If %(,) is

the operator defined in Lemma 3, we define an operator j by
(Fo)(t,%x) = 1(t,x) + € K(t,x)(I-Q)G(-,",P) .
The hypotheses on g imply that there are constants Kl’K'Z such that
* *
HG("')(P)Hl = Kl’ ||G(°,-,CP)—G(',',1J!)”1 & KQHCP‘WHQ ’

for any @,V in T,(r,a,b). From Lemmas 1 and 2, the fixed points




of F in T,(Y,2,b) coincide with the solution of (2.13) in

TE( Y,a,b). Therefore, it suffices to show that there is an € >0

such that the operator j has a unique fixed point in T2( Y,a,b)

for |el = e We prove this by showing that F is a contraction

1
T.(Y,2,b) into itself.

For the above constants Kl’KE and the constant K in

Lemma 3, choose € > 0 such that

a + 2K1Kel <b, 2K2Kel< 1.

we obtain from the definition of \7 and Lemma 3

For |¢l = e,
that
| Foll, = 1, + el K, )T, 9l
s &+ 2Kegflo(-, 0
S a4+ 2K1K€l<b .
Also,

”-7@-3"’”2 el” ;((’;’)(I'Q)[G(‘:',CP)-G(‘: ')W)]Hg

A

1A

2Ke 1o+, -,@)-6(+, -, V]

A

2K Ke [0-¥]



1h

for all ¢,V in Te(y;a,b). This shows that <# is a contraction
mapping of TE(Y;a,b) into itself. Therefore, # has a unique
fixed point I(r,€) in T2(Y, a,b) and it is obtainable by the
method of successive approximations (2.14). The function T(r,¢€)
is clearly continuous in e for |e¢| = e, and I(y,0) = 1.
Furthermore, for any 1,8 in MN C, with ||, ll8], =

In(r, €)-T(5, ), = | F T(x, €)= FT(5, €,

A

-8l +2K,K €| T, €)-T(5, &)

for |e| = €,- Since 2K,K €, < 1, this implies I'(y,e) is Lipschitzian
with respect to 7y uniformly with respect to €. Consequently,

I(y,€) is jointly continuous in 7y,€ and the theorem is proved.

Theorem 2. Suppose g satisfies (Al) and a < b< R,el,F(y;e) are
the quantities given in Theorem 1, If there exist an € ES € and

a function y(€) in M N C,, |v(e)| s a, [€ s €, such that

(2.15) QG(,,I(re),¢e)) =0,

then T(y{€),e) is a solution of (2.8) for |e| s e,. Conversely,
if (2.8) has a solution u(t,x,€) which is continuous in t,x,¢€
together with all first and second derivatives with respect to t,x

for 0=1t, x= 2, le‘ s € :“u(':')e)“ < b, ”Qu(',',E)” s 8,
2 2 2




0 =le = e, then u(t,x,e) = I(t,x,¥(€),e) where T is the

27

function given in Theorem 1, Qu{:,-,€) = y(€) and 7y{€) satisfies

(2.15).

Proof: The first part of the theorem is obvious. To prove the
second part, let Qu(-,-,€) = v{€). Since u is a solution of

(2.8), it follows that

i
o

(I'Q«)[utt"um'e G( "y )u)]

!
o

Q[utt—uxx-e G(<,-,u)] =0 .
One easily shows that Q(utt) = (Qu)tt’ Q‘(uxx) = (Qu)xx' Since
Qu = y(€), (e} in MN Cy, it follows that Q(utt-uxx) = 0.

Therefore, the above equations are equivalent to

W -u = € G(-,+,u) -~ € Q G(-,-,u)

QG(',':u) =0

for 0 s|el =€ Theorem 1 implies that wu = I'(y(€),€) from

o
the first equation and the second equation implies 1y(€) satisfies

(2.15). This completes the proof of the theorem.

Theorem 3. Suppose g satisfies (A;) and a <b <R, el,I‘( T, €)

are the quantities given in Theorem 1. Then there exists an 65,
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0 < e5 = el such that F(Y;e) is continuously differentiable
with respect to v for |, <a, |¢ = €3. Furthermore, the
derivative of TI(ry,€) with respect to 7y at € =0 1is the

identity operator.

Proofs In the proof, we will not write the explicit dependence of

I' upon € and will use the simpler notation I'(y). For any 71
in MNC, [, <a, we need to show (see, for example, [L4])
that there is a continuous linear operator Uy‘ mapping M N 02
into T N C, such that for every r >0, there is an s >0

such that
IT(y + 2)-I(n) - vAll, s dllal,

for A in MNC, and A H2 < s. If we choose HA||2 small

enough, say ||AI|2 < s., then T(y+ A) will be well defined from

l’
Theorem 1. If we let WP - I(y + &)-T(Y), use the definition of
G(-,-,9) in (2.12) and the mean value theorem, we obtain

6(t, x, W HT( 1)) -G(t, %, T( 1))

= gﬁ(t,x)wﬁxt,x)+g§ﬁt,x)wfit,x)+g§it,x)w§Xt,x)
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where
gﬁ(t,x) = gu(t,x,I‘(t,x, Y+Al),I‘t(t,x, Y+A),I‘X(t,x, =A))
gf)(t,x) = gp(t,x,l"(t,x, T),I‘t(t,X, Y+A2),I‘x(t,x, A))
gﬁ(t,x) = gq(t,x,I‘(t,x, r),l"t(t,x, Y),I‘x(t,x, ﬁA}))

and Al’A2’ A3 approach zero as A approaches zero. Notice that

gi, g;, gg depend only upon Y and there is a constant Kh such that

¥* * *
I gﬁl 1 I g§| 1 I g@]l = K, for A “2 < s,. Also, from the continuity

of T(Y) in vy, we have

A * A op* A o ¥
e, -l le ey, leg ~gglly = villally)
where Vv(s) -0 as s =0,

Consider now the integral equation
P o, O o
V(t,%) = 0(t,x) + € X(t,x)(I-Q)e V+e V +& V. ],

where ﬂ(,) is defined in Lemma 3 and @ is an arbitrary element

in MNC, For |el=ce $e€), 2KKe; <1 and any @ in MN G,

5
it is a simple matter to show (by an argument similar to that in the
proof of Theorem 1) +that this equation has a unique solution V(®)

in TN 02
by the uniqueness, one obtains V(kp) = kV(9), V(p+¥) = V(®) + V(V)

which satisfies HV(cp)He s (1-2KuKe5)'l||cp||2. Furthermore,

for all constants k and all 9,¥ in M0 C,- Therefore V(p) is
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a continuous linear mapping of M N C2 into T N C2 and we designate
this mapping by UY’ Notice that UT is equal to the identity for
€ = 0.
. c s A
With the above definition of w~, U, and A H2 < sy,

|€l = 65, we have

A

P A= e X, ) (TN U A (U A MEL (VU A)]

T

+ 6/7./(-,')(I-Q)[(gﬁ-gi)WA+(g§-g;)wA+(gﬁ—gZ)Wﬁ ]

Using all of the previous estimates and the fact (from Theorem 1)
that I(y) is Lipschitzian in 7y with some Lipschitz constant K

independent of €, we obtain

A

A A
120 Al = 2KV Al 2xevila Al

and, thus,

A

(1-2K,ke;) 2K Ke,v(| 8 Al -

IMual,

This completes the proof of the theorem.

Notice that nothing is changed in the above theory if g
depends continuously upon €. We will use this remark in the examples,
We will refer to equations (2.15) as the bifurcation

equations or determining equations for problem (2.8) and a solution




1{€) of these equations which belongs to M N 02 is a necessary
and sufficient condition (in the sense desecribed by Theorem 2) for
the existence of a solution to (2.8) for € sufficiently small.

A more convenient form of the bifurcation equations can
be obtained by the following argument. A necessary and sufficient
condition for the existence of a solution of (2.8) is that
QG(-,-,T(1,€)) = 0 where T(y,€) is defined in Theorem 1. On

the other hand, Lemma 1 yields the result that this is equivalent

to saying that 7y satisfies

H(Ys E) = 0,
def
(2’16) ETTH(Y’E)(;Y) = f g(S’y'S’P(S’y‘S; Y,G),I‘t(s,y-s, Y,e)’PX(S’Y‘Sy Y’ €))dS;
o]
0O=sys2ar.

For later reference, the explicit formula for H(y,0) is

2T
(2'17) arH(T,O)(y) = f g(S’y"S} Y(S,y-s), Yt(s)y's), TX(S,y—S))dS
o

Osys2or

which, by the way, can be calculated without any successive approximations
whatsoever. Also, if the conditions of Theorem 3 are satisfied,
then it is a simple matter to show that the derivative H(Y;O) of

H(Y,0) with respect to 1 is given by
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(2.18) ar{H' (1,0)8)(y) =

2T

[ g (s,y-5,1(s,y-5), 7% (s,y-8), 7, (s,¥-8) ) As, y-s5)
0]

+

gp( S,y-8, Y(S;Y"S)) Yt(s)-V‘S): YX( S,y-s))At( 8,y-8)
+ gq( S5,y-8, Y(SyY'S); Y-t(s:y"s): YX( s,y-s))AX(s,y-s)]ds )

0=y 22r.
If g satisfies (Al), then H(Y,€) is a continuous mapping of
(M N Cg) X [-el,el] into the subspace of C, consisting of 2r-
periodic functions. If g satisfies (A,), then H(r,¢),
H'(v,€) are continuous mappings of (M N C,) X [-€;,¢;] into the

subspace of C consisting of 2r-periodic functions. If g

1
satisfies (AB)’ then H(r,€), H'(y,€) are continuous mappings of
(M N 02) X [-el,el] into the subspace of C, consisting of 2m-periodic
functions.

By using these remarks and the implicit function theorem
in Banach spaces [4], we immediately obtain the following result which
was previously discovered by Vejvoda [7,Theoreﬁ 4,1.1] by an application

of a procedure more similar to the usual method of Poincaré in ordinary

differential equations.

Theorem 4., Suppose g satisfies (Ag) and H(r1,0), H'(1,0) are

defined by (2.17),(2.18). If there exists a v, in M N Cy




||Tb“2 < a, such that H(Yb,O) = 0 and H'(yb,o) has a con-

tinuous inverse which maps the subspace of C consisting of

1
2r-periodic functions into M N C,, then there exist an €y

0 <eg =e€), anda function u(t,x,7_,€), continuous in t,x,€
and having continuous second derivatives wi
for |e| =€, 0=5t, x=2r, such that u(t,x,7,,0) = v, and
u(t,x,7,,€) satisfies (2.8) for |e| =¢,. If g satisfies
(A5), then the same conclusions are valid provided there is a
v, in MnC,, Hybne < a such that H(y,0) =0 and H' (7_,0)

has a continuous inverse which maps the subspace of C2 consisting

of 2m-periodic functions intc M N Co-

Remark. As we shall see in the applications, Theorem 4 in its

present form is sometimes not convenient because of the condition

on the inverse mapping being regquired to take all periodic functions
of period 27 which are Cl(or C2) into M N C2. Actually, the

mean values of the periodic functions in the domain of the inverse

are not important as the following argument shows. The implicit
function theorem could just as well be applied direectly to the
equations (2.15) which written out explicitly in terms of the function

H(v,€) defined in (2.16) are

dgf

A

H(y, €) (t,x) H( 1y€) (x+t)-H(T,€) (-x+t) = 0, O = x,t = 27,

Therefore, if we find a v, in M0 C, such that ﬁ?xb,o) =0
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and ﬁG(Y;O) has an inverse which maps M N Cl(or M N 02) into
M0 C2, then the implicit function theorem will imply the existence

of a solution for € small. Clearly,
o
(B (1,e) ) (t,x) = (H'(1,€)8) (x+t)-(H' (7, €) ) (-x+t),

~
and finding the inverse of H'(Yb,o) is equivalent to solving the

equation

(H'(Yb,O)ZQ(x+t)—(H'(rb,O)AQ(-x+t) = q(x+t)-q(-x+t)

0=£x, t=sar

where q 1is an arbitrary 2m-periodic function in Cl(or 02) whose
mean value obviously is of no importance.

Another convenient form for the bifurcation equations is

the following

Theorem 5. If g satisfies (Al)’ then a necessary and sufficient
condition (in the sense described above) for the existence of a
solution of (2.8) is the existence of an €, 0 <€ =€, anda
function y(€) din M N C,, |I¥(e)ll, S 2, 0= lel =€, such that

em
(2.19) [ [ 6(t,x,T(y(€),€))A(t,x)atdx = O for all A in M N Cy,,
o O



where TI(y,€) is given in Theorem 1 and G(t,x,®) in (2.12).

The proof of this follow immediately from Lemma 1 and
the faet that 7y must satisfy (2.16) in order to have a solution
of (2.8). This type of criterion for the existeﬁce of a solution
has been used by Rabinowitz [5], but directly on (2.8). Knowing
that one need only solve (2.19) for the specific TI(r1,e) given
in Theorem 1 should lead to some simplification in the proof

of Rabinowitz.

2.5. Examples.

2.3.1. Consider the equation

(2.20) w-u . = €[u +bu+ ow + (t,x)]

where b,c are constants, b+ 0 and f satisfies (AE) and (2.9).

We will apply Theorem 4 to obtain for lel and ’cl small the

existence of a solution u(t,x,€) of (2.20) which is 2r-periodic

in t,x and odd in x. The functions H(7Y,0), H'(y,0)A in (2.17),

(2.18) are easily seen to be
(2.21)  H(7,0)(y) = D' (y)+[brem(p7) Ip(y)+ep (¥)-cm(p>)+h(y),

(2.22) (' (71,0)8)(y) = ¢ (y)+[b+6cm(p2)]q( y)-3el m( pgq)-Qm(pq)],

0O =£ys=s2p
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where v(t,x) = p(x+t)-p(-x+t),A(t,x) = a(x+t)-a(-x+t), p(y),aly)
ap(y)/dy, a'(y) = da(y)/ay,

m(q) = 0, and h(y) = (1/2W)fivf(s,y-s)ds.

are 2r-periodic in y, p'(y)

n(®) = - ®(y)ay/er, and u(p)

1

We need to show that equation (2.21) has a solution v,
in M N C, and that for this v, the operator H'(Yb,o) defined
by (2.22) has a continuous inverse which maps the subspace of C,
consisting of 2rm-periodic functions into M 0 CE' It seems to be
difficult to solve this problem in general, se we take a particular
case; namely, ¢ small., For arbitrary constants k,Z, k >0,

consider the equation

(2.25) p'(y) + (beck)p(y)+ep (y) - et + h(y) = 0

For c¢ sufficiently small, equation (2.23) has a unique 27T-periodic

solution p(y,k,f,c) satisfying
® b
o(y,k, L,c)=-[ e Yh(y-u)du + 0(c) as ¢ =0,
o
where we have taken b >0 for definiteness. If b <0, then the

same remark holds except a different integral is used. If this

function p is to yield a solution of H(y,0) = O, then k,I must

satisfy the equations k m(pg(-,k,l,c)), L = m(p5(-,k,1,c)), or

o )
k - E%— fo [foe—buh(y-u)du]Edy +0(e) =0

(2.24

2T o
L+ E% [ 1J e'buh(y-u)du]de +0(e) =0
o o
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where the symbols 0(c) designate terms which approach zero as

¢ »0. But equations (2.24) obviously have a solution for ¢
sufficiently émall and, thus, H(r,0) = O has a solution T, in
MNC, for small c. The same type of argument shows that H'(Yb,o)
has a continuous inverse of the desired type for ¢ small. Theorem

4 them implies the existence of a solution of (2.20) which is

2r-periodic in t,x and odd in x.
2.3.2. Consider the equation

(2.25) !

it Y = e[-ui + £(t,x%)]

where f satisfies (AE) and (2.9). We shall show by an application
of Theorem 4 that for € sufficiently small, eguation (2.25) has

a unique solution uft,x,€) which is 2r-periodic in t,x and

odd in x provided that

27
n(y) % 51 #(s,y-0)as, n(y) ko, 03

(o]

A
£S5
A
y

is an odd function of y. If 1(t,x) = p(x+t)-p(-x+t),p(y+2r) = p(y)
for all y, and if @ is any 2r-periodic function define

ar

oy) = dp(y)/ay , m(®) = lgf ®(s)ds.
o]
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A few simple computations yield from (2.17)

1

2or
H( 1, 0) %F [ -02(y)-367 (7)ol ~y+28)+3a( y) o ( -y+25) - (-y+25) ]
+ f(s,y-s)}ds

-o?(y)-aa(y)m(ag) +m(®) +nly) , Osy

= s eor .

If H(7v,0) = 0, then h(-y) = -h(y) implies that

(2.26) - (3)-0(-y)-3m(a)[a(y)+a-y)1+m(e”) =0 , 0 S y s 2n
and an integration from O to 27 yields m(a5) = 0. Also, if
m(a5) = 0, then (2.26) yields ofy) = -o(-y), 0 =y =2 . Con-

sequently, the equation H(y,0) = O has a solution if and only

if the equation
o; 2
(2.27) (y) + 3m(a)o(y)-h(y) =0, O =y = eam,

has an odd solution.

For any constant k > O, consider the equation
(2.28) a5(y) + 3ka(y) - h(y) =0, 0 =y s 27,

Since the discriminant of the polynomial on the left hand side




of (2.28) is-negative, there is a unique real solution o(y,k) of
(2.28) given by
1/3 1 1/3
22 oy, 1) = tn(y) + 805,01 + (0() - v, 7Y
(2.29)
def .. 2 3.1/2
By, 0 O hi(y) + w12 osysa,
and of-y,k) = -a(y,k). For this to be a solution of (2.27), k must
2
be equal to mla (-,k)]. Carrying out this computation, we obtain

the result that k must satisfy

F(k) =0

2m
(2.30) rk) €T3k . L ([h(y)+6(y,k)]2/5+

-8 /57T o

2
+ [b(y)-B(y,k)] ey .
Another simple computation yields

dF(k) 22/3y fTT 1

=5+—F 5y ) {[h(Y)+5(y,k)31/3-[h(y)-£3(y,k)]l/B}dy.
(o] s

For k >0, this integrand is always positive and, thus, dF/dk >0
for k >0. Since F(0) <0 and dF(k)/dk »» as k -, it

follows that (2.30) has a unigue solution k*., The function oy, k¥)
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given by (2.29) is therefore the unique real solution of (2.28).
Since oa(-y,k*) = -a(y,k*), it follows that any primitive p of
a yields a solution y of H(Y,0) = O and it is unique. Before
completing the proof of existence of a solution of (2.25), we make
some remarks.

Notice that all constants and functions involved in this
analysis could be obtained very easily on a computer. Also, once
the constant k* is found for which F(k*) = 0, then one can also
find a Fourier series solution of (2.28) with k = k*¥. In general,
this method of computation should be much easier than using double
Fourier series in t and x 1in the original equation (2.25).
However, it is questionable as to the merits of using any Fourier
series at all, since knowing k¥ yields by simple numerical
integration a primitive p of ofy,k*) form (2.29), and an
approximate solution Y(t,x) = p(x+t)-p(-x+t) of (2.25) to order
€ as the superposition of two traveling waves. Another remark
that seems to be interesting is that the constant k¥ = n{o?(',k*)]
is determined without knowing anything about the solution. Such
constants should in general have some physical significance. TFor
this particular case, one shows that up to terms of order g, the

total energy in the oscillatory motion at time t,

T
J [Yi(t;x) + Ti(t,x)]dx s
O

is proportional to k* and that the kinetic energy at t = O,




T 2
[ 17(0,%)]ax
0

is proportional to k¥*. The integrations are taken from O to 7
only because of the original problem of the string with length
which was fastened at the ends 0 and 7.

To complete the proof of the existence of a sclution,
we need to show that H'(y,0) given in (2.18) has a bounded
inverse which maps the subspace of 2r-periodic functions in Cl
into M N 02. We are going to make use of the remark following
Theorem 4 where it was pointed out that the mean values of the
functions in the domain of the inverse are not important. ILetting
A(t,x) = a(x+t) - a(-x+t), B(s) = dq(s)/ds, and ¥(t,x) = p(x+t)-p(-x+t),

o s) = dp(s)/ds, where o satisfies (2.27), we obtain from (2.18)

that
1 afy) ar
-5 (@ (50)2)() = 26(y) + T [ als)p(s)as -
2m
- = I dA(s)p(s)as

2
where k = m(a ). Our first problem is to solve the equation

Ay) 1 2T
(2.21) B(y) + Bor fo a( s)p(s)as - T foa (s)B(s)ds = e(y),

Osys=s2r,
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where ¢€(y) is a 27-periodic function in Cl which is arbitrary
except we are allowed to choose the mean value in any manner
whatsoever,.

We choose our class of 2r-periodic functions e in the

following manner, If e is an arbitrary 2m-periodic function in Cl

with m(¥) = 0, then

2y

e:;—'lr'n_-}zfa(S)’;(S)ds
o]
is an admissible 2r-periodic e. For any e of this form equation

(2.31) has a unique solution given by
oAy) 7 1 2o
Bly) = e(y) - S [ als)e(s)as + % [ a(s)e(s)ds .
o o

Notice that m(f) = O and, therefore, q(y) = fyB is
2r-periodic and yields a function A in MDN 02. Also, there

exists a k such that ||A] = kHeHl for all e and we have proved

our result.
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5. The characteristic problem for the hyperbolic eguation.

5.1. The linear characteristic problem. Consider the

classes of functions S and N defined by

[ 4]
I

{p: o(x + 2m,y) = o(x,y) = ¢o(x,y + 21)},
(3.1)

=
1]

(0: o(x,y) = a(x) +B(y)} .

The decomposition of elements in N is not unique, but it can
be made so by arbitrarily specifying that either a or B has
average zero over a period. For any @ in S N Ck’ k 2z 0, we

define the element Pp in NN Co k20, by

1 2 1 am 1 fgn am \
(3.2) (B)(x,5) = 5= olx,n)an + 5= [  o(g,y)ae - — [ [ o(g,n)dtan.
o o ™ o o

It is clear that P 1is a projection operator of S N Ck into N N Ck'

Finally, if the set l\TL is defined by
(3.3) ¥ = (¢ in snc.: Pp=0},

then Nl n (NN Ck) = {0} for all k.
The operator P¢ is the same as the one used by Cesari

[2] except‘in his notation, he denoted this by (Po)(x,y)= m( x)+n(y)-u.
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Lemma 4. The following statements are equivalent:

i) o et

- am
i1) @ esnc,, [To(x,nan =0, [T0(¢,y)dt = o,

1A

Osx, y=2r,;

or
iii) fi”fo V(x,y)o(x,y)dxdy = O for all ¥ in N N C,-

Proof: The fact that i) is equivalent to ii) follows immediately

from the definition. One shows that ii) and iii) are equivalent

by using integration by parts to obtain

or or o o
J [ la(x)+B(y)le(x,y)dxdy = [ ofx) [ [ o(x,n)dnldx
(o] (o] (o] O
or or
= [ BN o(ty)atlay
(o] (o}

for all ¥ in NNC_, ® in SNC, ¥(x,y) = a(x)+B(y). The
result then follows immediately.
The significance of the above definitions lies in the

following lemmas.

Lemma 5. The set N N Cl coincides with the solutions of the

boundary value problem

u =0

(3.4)
u(x + am,y) = u(x,y) = u(x,y + 2m)

~o < X, Yy <@
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Lemma 6. For a given integer k and a given © in SN Ck’

the boundary value problem

uxy = CP(X’ Y)

(3.5)
u(x + 2m,y) = u(x,y) = u(x,y + 2m)
~o <X, y<>
has a solution if and only if ©¢ € N'L N1 C,. Furthermore, if
Q € Nl N C,, then there exists a unique solution of (3.5) which

belongs to Nl nc If this unique solution is designated by

k+1°
2(x,y)9 , 0 = x,y s 21, then Z£{-,-) is a linear operator mapping

Nl n Ck into N'L n Ck+l and there is a constant L such that

(5.6) l2C-, ol , = T ol -

Proof: The proof of the necessity in the first part of the lemma
follows simply by integrating the differential equation and using
the periodicity of ux,uy. For the sufficiency, put u(x,y) =

fz fg ®(&,n)dEdn and verify the periodicity directly. The unique-
ness of a solution of (3.5) in Nl follows because the difference

of two such solutions would be in N N Cl and 1\1'L n((Nn Cl) = {0}.

Define

det XY 1 T sy
2(x,y)e "= [ [ o(g,n)atan - = [ [J ] o(¢,n)atan]as
o 0 (o] O O

(3.17)

2r xr 2r 2r s r

-5 1 [e(g,natmlar + <5 [ [ [J [ o(g,n)aganlards
© oo g )

c © 0
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It is clear that £(:,° )9 € w0 C,,, @and that there

exist a constant L such that (5.6) is satisfied. This completes

the proof of the lemma.

%,2. The nonlinear characteristic problem. Consider the problem

Uy = € f(x,y,u,ux,uy)

(3.8)
u(x + 2m,y) = u(x,y) = u(x,y + 2m)

where € 1is a real parameter and f(x,y,u,p,q) is periodic in
x and y of period 2r and continuous in Xx,y,u,p,q and

locally lipschitizian in u,p,q in a region Q(R) given by
(3.9) AR) = {x,y,u,p,a : OSx,ys2r, |u+p+d <R .

For a fixed Y e N N Cl and for given positive constants

a,b, a <b <R, let

(3.10) S (vab)=({vesncy: Pr=1 lrl,sa v, =1v}.

If @ 4is a given function in S.(v,a,b), then we will let F(-,-,9)

1

designate the function

def
(3.11)  F(x,5,9) = £(x, 7,0(x,),9,(x,¥),9.(%,¥)), 0 = x,y = ar.
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Theorem 6. For any given positive constants a < b <R, there
is an €l > 0 with the following property: corresponding to each
reNnC, ||‘r||l S a and to each ¢, |€| = €,, there is a unique

function T = I'(v,€) in S.(7,a,b) such that I‘xy(x, y) 1is con-

5

tinuous in x,y and satisfies

(3.12) ny = € Mx,y,I') - ePF(-,-,D)(x,y)

where F is defined in (3.11). The function T(r,€) can be cbtained

by the method of successive approximations

RO

n+l n

(3.13) WD (0 5) = Hxy) + € 205 y) (T-D)F(-, -, u'D),
n=0,12,...

where #£(-,-) is defined in Lemma 6. Finally I(y,€) is continuous

in 7Y, € and lipschitzian in 7y uniformly with respect to € for

Hﬂll £ a, |€| s el} F(Y,O) = 7.

Theorem 7. Let a <b <R, €, I'(r,€) be the quantities given in
Theorem 6. If there exist an €, % € and a function y(e) in
Nncy, [ve)] 2a, lel = e, such that

(3.14) PF(',',P(Y(€),€)) =0
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then T(71(€),€) is a solution of (3.8) for |e| s €,. Conversely,

if (3.8) has a solution u(x,y,€) which is continuous in x,y,e
together with LWL for 0 = x,ys2r, |¢ = €05 Hu(',',e)”l < b,
HPu(',',e)Hl Sa for 0= )¢ = €5, then u(x,y,€) = I(x,y, v(e),¢)

where TI' 1is the function given in Theorem 6, Pu(-,:,¢) = y(€)

and y(e) satisfies (3.1L4).

Theorem 8. ILet a <b <R, €, T(r,€) be as in Theorem 6. If

£(x,y,4,p,q) 1is Lipschitz continuously differentiable with respect to wu,p,q
in Q(R), then there exists an €, 0 < & £ €, such that

I(v,e) is continuously differentiable with respect to vy for

HYHl <a, |¢ = €, Furthermore, the derivative of I(y,e) with

respect to v at € = 0 1s the identity operator.

The proofs of Theorems 6,7,8 are exactly the same as the
proofs of Theorem 1,2,3 if one replaces M,Q,g,Tg(Y;a,b),Grﬂj in
éhe preceeding proofs by N,P,f,Sl(Y;a,b),F,i, respectively., Of
course, the estimates are made in C; with the aid of Lemma 6.

Equations (3.14) are called the bifurcation equations or
determining equations for problem (3.8) and a solution y(€) of
these equations which belongs to N Cl is a necessary and
sufficient condition (in the sense described by Theorem 2) for the
existence of a solution to (3.8) for € sufficiently small.

From Lemma 4, equations (3.14) are equivalent to the

following:




H(r,e) =0,

2m 2m

(3.15) H(y, €)(x,¥) et | F(x,n,T(1,€))dn + [ F(&,y,T(1,¢€))de ,

o o
0

1A

X,y £ erm,

where F is defined in (3.11). Since I(y,0) = v, the "first

approximation” to these equations are

H(y,0) =0,
or or

(3.16) H(v,0)(%,y) = [ F(x,n,Mdn + [ F(t,y,MNde,
(o] o]

If the conditions of Theorem 3 are satisfied, then the
function H(7Y,€) defined in (3.15) is differentiable with respect
to 7. If we designate the derivative with respect to ¥ by

H'(Y,€), then it is easy to show that

2
[H'(Y;G)A](X,Y) = f grad f(X,Tbe(X,TI))’Z (X:T])dﬂ
o]

er

+ [ grad £(&,y,7(¢,y¥)) A (&,y)dE ,
N

(3.17)

— def — def
grad f = (fu;fp:fq), r = (Y’YX’Yy)’ A= (A:Ax’Ay);
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where fu,fp,f denote the partial deriviatives of f(x,y,u,p,q)

a
with respect to wu,p,q, respectively.
If f(x,y,u,p,q) depends explictly upon p,q then
H(r,€), H(r,e) in (3.16),(3.17) are continuous mappings of
NN Cl intoc N N Co' If f depends only upon x,y,u, then
H(Y,€),H'(v,€) are continuous mappings of N N ¢, into NN C,.
By using these remarks, the implicit function theorem

in Banach spaces (see [“]) and Theorem 7, one easily deduces the

following result.

Theorem 9. Suppose the conditions of Theorem 8 are satisfied and
H(v,€), H'(1,€) are defined by (3.15),(3.17), respectively. If
there is a vy  in NONC,, HYle < a, such that H(yb,o) =0
and the linear operator H’(Yb,o) has a continuous inverse taking
NN C, into N N Cl’ then there exist an €, >0 and a function
u(x,y,yb,e) continuous in x,y,€ for |e| = €, 0= xy=2r,
u(x,y,yb,o) = Yb(x,y), such that u(x,y,yb,e) satisfies problem
(3.8). The same conclusion holds if f depends only upon X,¥,u
and there is a v  in NN Cy, “76“1 < a, such that H(y_,0) =0
and H'(yb,o) has a continuous inverse mapping N N Cl inte N N Cl'
Notice that nothing would be changed in the above theory
if the function f in (5.8) depended continuously upon a parameter

€. We will actually use the theory for this case in the example

below.
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5.3. Examples.

3.3.1. Consider the system (3.8) with

(3.18) f(x,y,u,€) = e[V¥(x,y) + Cu + € g(x,y,u)]

where C k O is a constant, V,g are continuously differentiable
with respect to x,y,u. For y,A in NN C, {x,y) = a(x)+8(y),
Nx,y) = a(x) + b(x), and the particular f in (3.18), we

obtain from (3.16),(3.17) that

or o
H(71,0)(x,y) = 2rCla(x)+B(y)] + C[/ a(&)at + [ B(n)an]

C o}

ar 2r

+ [J Wx,n)dn+ [ V(&,y)dyl, 0= x,y
O [s]

¥

[H (v, 0)8](%,y)

A

2rcfa(x) + v(y)], 0 = x,y s 2m,

2r

Since C £ 0, H(y,0) = 0 if 21C a(x) = - [ |\lf(x,n)dn, 2rc p(y) =

- fiWW(g,y)dg - C fi”a(g)dg. The operator g'(y;o) obvioulsy has
é cgntinuous inverse mapping N N Cl into N N C1 and Theorem 4
implies the existence for € small of a solution of (3.8) with

f given in (3.18).

3.2.2. Consider the system (3.8) with

(3.19)  £(x,¥,90D,9,€) = ¥(x,3) + Cu+ ¥ (¥)p + ¥, (x)q + ea(x,¥,1,D,9)
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where W,Wl,wg are continuous and g satisfies the conditions
of Theorem 8. We shall also suppose that C L 0 and the guantities

2r er

e}

are different from zero.
For any 71,4 in NN C,, 1x,y) = a(x)+B8(y),ANx,y) =
= a(x)+b(y), (') denoting differentiation, H(71,0)(x,y) = E(x, )+G(y, 1),

H' (7,0) = E'(y) + G (v), and f given in (3.19) we obtain from

(3.16),(3.17) that

2r 2

E(x, ) = 2rca(x) + ra'(x) + [ V¥(x,n)dn + ¢ [ B(n)an,
o o
2T 2

G(y,7) = 2rcB(y) + sp'(y) + [ (¢, y)dy + ¢ [ ofg)ae,
o o

E'(y) = 2rCa(x) + ra'(x),

G'(7) = 2rCb(y) + sb'(y),

for O = x,y £ 27, TFrom the remark after the definition in (3.1)
it is no loss in generality to assume that fi”&(n)dn = 0. The
relation H (1,0) = 0 is equivalent to E(x,7) = 0, G(y,7) = O
and the above conditions on w,wl,wg and C 1imply that the relation
E(x,7) = O has a unique 27-periodic function o(x) which has a

continuous first derivative. Having determined o, the relation

G(y,¥) = O determines a unique 27-periodic function B(y) which
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has continuous first derivative. This game argument shows that
1I'(1,0) has a continuous inverse mapping N N C, into N N Cl
and Theorem 9 then implies the existence for € small of a solution

of problem (3.8) with f given in (3.19).

Remark. Cesari [2] discusses (3.8) with f satisfying (3.19)
only under the assertion C 4 O and asserts the same conclusion
as in section 3.3.2. Notice that we need r, s ¥ 0 if wl,wg

are not identically zero. If wl,wg are identically zero, we need

g depending only on x,y, and u as in (3.18).
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